50 research outputs found

    Kinematic analysis of a Meso-Scale Parallel robot for laser Phonomicrosurgery.

    No full text
    International audienceThe paper presents the kinematic model of a new meso-scale (~ 1 cm3) parallel kinematic machine intended for laser phono-microsurgery of the vocal folds. The proposed mechanism uses the displacement generated by piezoelectric cantilever actuators manufactured via a Smart Composite Microstructure technique. The architecture, the geometry, and the position kinematics of the device, modeled as a spatial linkage, are discussed briefly. Then, the paper presents a velocity and singularity analysis and concludes that the new meso-scale parallel kinematic machine does not have singularities in the neighborhood of the reference configuration where it is required to operate

    A general method for the numerical computation of manipulator singularity sets

    Get PDF
    The analysis of singularities is central to the development and control of a manipulator. However, existing methods for singularity set computation still concentrate on specific classes of manipulators. The absence of general methods able to perform such computation on a large class of manipulators is problematic because it hinders the analysis of unconventional manipulators and the development of new robot topologies. The purpose of this paper is to provide such a method for nonredundant mechanisms with algebraic lower pairs and designated input and output speeds. We formulate systems of equations that describe the whole singularity set and each one of the singularity types independently, and show how to compute the configurations in each type using a numerical technique based on linear relaxations. The method can be used to analyze manipulators with arbitrary geometry, and it isolates the singularities with the desired accuracy. We illustrate the formulation of the conditions and their numerical solution with examples, and use 3-D projections to visualize the complex partitions of the configuration space induced by the singularities.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under contract DPI2010-18449, and by a Juan de la Cierva contract supporting the fourth author.Peer Reviewe

    On the numerical classification of the singularities of robot manipulators

    Get PDF
    This paper is concerned with the task to obtain a complete description of the singularity set of any given non-redundant manipulator, including the identification and the precise computation of each constituent singularity class. Configurations belonging to the same class are equivalent in terms of the various types of kinematic and static degeneracy that characterize mechanism singularity. The proposed approach is an extension of recent work on computing singularities using a numerical method based on linear relaxations. Classification is sought by means of a hierarchy of singularity tests, each formulated as a system of quadratic or linear equations, which yields sets of classes to which an identified singularity cannot belong. A planar manipulator exemplifies the process of classification, and illustrates how, while most singularities get completely classified, for some lower-dimensional subsets one can only identify a restricted list of possible singularity classes.Postprint (published version

    coordinated selection and timing of multiple trajectories of discretely mobile robots

    Get PDF
    Abstract The paper addresses the multi-agent path planning (MPP) of mobile agents with multiple goals taking into consideration the kinematic constraints of each agent. The "Swing and Dock" (SaD) robotic system being discussed uses discrete locomotion, where agents swing around fixed pins and dock with their mounting legs to realize displacement from one point to another. The system was developed as a subsystem for mobile robotic fixture (SwarmItFix). Previous work dealt with MPP for SaD agents using the concept of extended temporal graph with Integer Linear Programming (ILP) based formulations. The approach discretized time into unit steps, whereas in reality, the agents are constrained by velocity limits. Hence, a real-time schedule is required to accurately plan the agent movement in a working scenario. We utilize the concept of simple temporal network and extend our ILP formulations to model the velocity kinematic constraints. The mathematical formulations are implemented and tested using a GUROBI solver. Computational results display the effectiveness of the approach

    The SwarmItFix Pilot

    Get PDF
    Abstract The paper presents the integration and experiments with a pilot cell including a traditional machine tool and an innovative robot-swarm cooperative conformable support for aircraft body panels. The pilot was installed and tested in the premises of the aircraft manufacturer Piaggio Aerospace in Italy. An original approach to the support of the panels is realized: robots with soft heads operate from below the panel; they move upward the panel where manufacturing is performed, removing the sagging under gravity and returning it to its nominal geometry; the spindle of amilling machine performs the machining from above

    A general method for the numerical computation of manipulator singularity sets

    Get PDF
    The analysis of singularities is central to the development and control of a manipulator. However, existing methods for singularity set computation still concentrate on specific classes of manipulators. The absence of general methods able to perform such computation on a large class of manipulators is problematic because it hinders the analysis of unconventional manipulators and the development of new robot topologies. The purpose of this paper is to provide such a method for nonredundant mechanisms with algebraic lower pairs and designated input and output speeds. We formulate systems of equations that describe the whole singularity set and each one of the singularity types independently, and show how to compute the configurations in each type using a numerical technique based on linear relaxations. The method can be used to analyze manipulators with arbitrary geometry, and it isolates the singularities with the desired accuracy. We illustrate the formulation of the conditions and their numerical solution with examples, and use 3-D projections to visualize the complex partitions of the configuration space induced by the singularities.Preprin

    Generalized singularity analysis of mechanisms

    No full text
    grantor: University of TorontoThis thesis investigates a general class of mechanism configurations, usually referred to as kinematic singularities. The study of such configurations is of major practical and theoretical importance. Indeed, the kinematic properties of mechanisms change significantly in a singular configuration, and these changes can prove to be either beneficial or undesirable for different applications. On the other hand, the theoretic significance of singularities in mechanism theory is well-known and related to the fact that singular points play a prominent role in the theory of differentiable mappings. The central objective of this dissertation is to address the problems of mechanism singularity in a most general setting, namely, to consider arbitrary singular configurations of both non-redundant and redundant mechanisms with arbitrary kinematic chains, with a special emphasis on the study of mechanical devices with complex kinematic chains and non-serial, high-degree-of-freedom architectures. To this goal, a rigorous general mathematical definition of kinematic singularity for arbitrary mechanisms is introduced. This is achieved by means of a mathematical model of mechanism kinematics formulated in terms of differentiable mappings between manifolds. When the mathematical model is applied to the relationship between the joint and output velocities, a new unifying framework for the interpretation and classification of mechanism singularities is obtained. This framework, based on the newly introduced six singularity types, is applicable to arbitrary non-redundant as well as redundant mechanisms. Mathematical tools, such as singularity criteria and identification methods, are developed for the study of the singularity sets of both non-redundant and redundant systems with lower kinematic pairs.Ph.D

    Singular configurations of mechanisms and manipulators

    No full text
    corecore